Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats.
نویسندگان
چکیده
In spinal cats, locomotor recovery without rehabilitation is limited, but weight-bearing stepping returns with treadmill training. We studied whether neurotrophins administered to the injury site also restores locomotion in untrained spinal cats and whether combining both neurotrophins and training further improves recovery. Ordinary rat fibroblasts or a mixture of fibroblasts secreting brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) (Fb-NTF) were grafted into T12 spinal transection sites. Cats with each type of transplant were divided into two groups: one receiving daily training and the other receiving no training. As expected, trained cats with/without neurotrophin-producing transplants could step on the treadmill. Untrained cats without neurotrophin-producing transplants could not locomote. However, untrained cats with neurotrophin-secreting transplants performed plantar weight-bearing stepping at speeds up to 0.8 m/s as early as 2 wk after transection. Locomotor capability and stance lengths in these animals were similar to those in animals receiving training alone, suggesting that administration of BDNF/NT-3 was equivalent to treadmill training in restoring locomotion in chronically spinalized cats. Cats receiving both interventions showed the greatest improvement in step length. Anatomical evaluation indicated that all transections were complete and that axons did not enter the cord caudal to the graft. Thus BDNF/NT-3 secreting fibroblasts were equivalent to training in their ability to engage the locomotor circuitry in chronic spinal cats. Furthermore, the rapid time-course of recovery and the absence of axonal growth through the transplants indicate that the restorative mechanisms were not related to supraspinal axonal growth. Finally, the results show that transplants beneficial in rodents are applicable to larger mammals.
منابع مشابه
Could neurotrophins replace treadmill training as locomotor therapy following spinal cord injury? Focus on "neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats".
How to repair the injured spinal cord is a question that scientists have struggled with for decades. The answer is of course still a mystery. But ask people on the street for their opinion and they will likely offer something like “stem cells” as the solution. I find it amusing (and honestly, a bit annoying) that family and friends continue to ask me if there is anything new with stem cells. My...
متن کاملCould Neurotrophins Replace Treadmill Training as Locomotor Therapy Following Spinal Cord Injury? Focus on “Neurotrophic Factors Promote and Enhance Locomotor Recovery in Untrained Spinalized Cats”
How to repair the injured spinal cord is a question that scientists have struggled with for decades. The answer is of course still a mystery. But ask people on the street for their opinion and they will likely offer something like “stem cells” as the solution. I find it amusing (and honestly, a bit annoying) that family and friends continue to ask me if there is anything new with stem cells. My...
متن کاملMinocycline Enhance Restorative Ability of Olfactory Ensheathing Cells by Upregulation of BDNF and GDNF Expression After Spinal Cord Injury
Purpose: Spinal cord injury is a global public health issue that results in extensive neuronal degeneration, axonal and myelin loss and severe functional deficits. Neurotrophic factors are potential treatment for reducing secondary damage, promoting axon growth, and are responsible for inducing myelination after injury. Olfactory ensheathing cells (OECs) and minocycline have been shown to promo...
متن کاملTreadmill training promotes spinal changes leading to locomotor recovery after partial spinal cord injury in cats.
After a spinal hemisection at thoracic level in cats, the paretic hindlimb progressively recovers locomotion without treadmill training but asymmetries between hindlimbs persist for several weeks and can be seen even after a further complete spinal transection at T13. To promote optimal locomotor recovery after hemisection, such asymmetrical changes need to be corrected. In the present study we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2007